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Summary. The theoretical power density spectrum S(f)  of ion current noise is calculated 
from several models of the sodium channel gating mechanism in nerve membrane. Sodium 
ion noise experimental data from the frog node of Ranvier [Conti, F., et al. (1976), J. Physiol. 
(London) 262"699] is used as a test of the theoretical results. The motivation for recent 
modeling has been evidence for a coupling between sodium activation and inactivation 
from voltage clamp data. The two processes are independent of one another in the Hodgkin 
and Huxley (HH) model [Hodgkin, A.L., Huxley, A.F. (1952), J. Physiol. (London) 117: 500]. 
The noise data is consistent with HH, as noted by Conti et al. (1976). The theoretical 
results given here appear to indicate that only one case of coupling models is also 
consistent with the noise data. 

Recent voltage clamp experiments on nerve axons have indicated that 
the Hodgkin and Huxley (1952) model of sodium conductance of axonal 
membrane is not entirely adequate (cf. Jakobsson, 1978). For example, 
the time constant for deconditioning the Na current during a depolarizing 
clamp step is slower than the time constant for turning off the current 
during the same step. This phenomenon has been observed in giant 
axons of Myxicola (Goldman & Schauf, 1973) and lobster (Oxford & 
Pooler, 1975), and in some axons of the blue crab walking leg (Connor, 
1976); however, other crab axons do not show it (Connor, 1976), nor 
does the frog node of Ranvier (Chiu, 1976). The HH model predicts that 
these two time constants should be the same. A second difference is a 
delay in the onset of inactivation in response to a depolarizing pulse 
which is preceded by a conditioning pulse of variable duration. That is, 
the dependence of inactivation on the duration of the conditioning pulse 
is sigmoidal rather than exponential, as predicted by HH. Myxicola axons 
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(Goldman & Schauf, 1973), frog node of Ranvier (Peganov, 1973) and 
giant axons from squid (Bezanilla & Armstrong, 1977) exhibit the effect. 
Thirdly, measurements of gating currents from squid axons (Armstrong 
& Bezanilla, 1977) indicate that several time constants are required to 
describe the Na ion gating mechanism. The HH model provides only two. 

These observations suggest that the inactivation process is coupled 
in some way to the activation of Na ion current. The two processes are 
independent of one another in the HH model. A few alternative models 
have been proposed recently to describe one or more of the above phenom- 
ena, or other deficiencies of HH (Moore & Cox, 1976; Jakobsson, 
1978; Armstrong & Bezanilla, 1977). A feature common to all of them 
is that activation and inactivation are coupled. 

The purpose of the present study is to calculate the current noise 
power density spectrum S( f ) ,  f - f r equency ,  predicted by these and 
related models, as well as HH, and to compare the theoretical spectra 
with noise data. The results from frog node (Conti et al., 1976) will be 
used throughout as a baseline for comparison, because their study is, 
perhaps, the most detailed experimental determination of S ( f )  for the 
Na system to date. Unfortunately, the inadequacies of HH vary consider- 
ably from one preparation to another. Moreover, the above models 
have been designed primarily for squid axon, so that the comparisons 
made in this paper to frog node data are not completely appropriate. 
Nevertheless, this exercise does demonstrate that the shape of S ( f )  is 
rather sensitive to the specific type of coupling proposed. 

H H  M o d e l  Spectrum 

The calculation of S ( f )  from a mathematical model of conductance 
based on macroscopic voltage clamp data is a straightforward and well 
documented procedure, especially for the HH equations (Hill & Chen, 
1972; Stevens, 1972). One important assumption is required before this 
theoretical connection can be made; namely, a microscopic interpretation 
of the physical process underlying the macroscopic conductance variables. 
For example, the HH description of the time and voltage dependence of 
Na conductance is given by m 3 h, where m and h are the activation and 
inactivation variables, respectively. They are the solutions to the first 
order differential equations 

dm/d t - rh= --(~m + flm)m + O~mm 
(1) 

l~ = - ( c~ h + flh) h + C~h h 
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where the cCs and /?'s are voltage dependent parameters which are in- 
dependent of time. This model has two physical interpretations (Stevens, 
1972). In one, m and h specify the rotational state of two different gating 
molecules with m or h=  1 referring to the particles being fully open, 
m or h =0  referring to them being fully closed, and intermediate values 
of the variables referring to them being fractionally open. In the second 
interpretation, the gating mechanism is viewed as consisting of four 
particles or molecular subunits, each of which is either in a fully open or 
fully closed position. The quantity m specifies the probability that any 
of the three activation particles is open and h specifies the probability 
that the inactivation particle is open. These two pictures give slightly 
different half power frequencies, so that noise data can, in principle, 
distinguish between them. The spectra of Conti et al. (1976) appear to be 
consistent with the discrete open-close picture. It also is supported by 
recent observations of discrete step-like changes in membrane current 
from single channels in artificial bilayers containing various macro- 
molecules (reviewed by Neher & Stevens, 1977), and from single channels 
in post-synaptic muscle membrane (Neher & Sakmann, 1976). However, 
similar direct measurements of channel openings have not yet been 
reported in nerve. 

In any case, the discrete open-close picture will be used in this paper 
because it has the further advantage of allowing a comparison of the 
models discussed in this paper in terms of kinetic diagrams. For example, 
the HH model in terms of the open-close particles, 

r f i @ m  h ~ h  (2) 

is equivalent to (Fitzhugh, 1965): 

[ 0 ]  ~ ~ [2 ]  , 3~m '- [ 3 ]  

Diagram A 

with conduction occurring only in state [3]. This diagram is simply another 
way of expressing the fact that the 3m particles and the h particle are 
statistically independent of one another. For example, when all 4 particles 
are closed, the channel is in state [0]. The probability that any single m 
particle opens in time A t is ~,, A t. Since any one of the three particles can 
open, the total probability that the channel makes a transition from [-0] 
to [1] is 3c~mAt. The other transition rates in the diagram follow from 
similar arguments. 
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Any permuta t ion  of the 3%,  2%,  % sequence, such as the %,, 2%,  
3 % sequence proposed  by Bezanilla and Arms t rong  (1975) and Moore  and 
Cox (1976) necessarily implies a very different physical mechanism for 
the gate which cannot  be described in terms of three statistically in- 
dependent ,  open-close particles. Similarly, any modification of the way 
in which ~h and J~h enter into Diagram A necessarily implies a coupling 
between activation and inactivation. The two processes are uncoupled  
in A, since the rate constant  from the lower to the upper  (inactivated) 
tier of states, or vice-versa, is independent  of the number  of open m particles. 

The single channel noise correlation function C(t) for this or any 
other model  in which conduct ion occurs for only one state of the kinetic 
diagram is given by the simple prescript ion (Hill & Chen, 1972; Stevens, 
1972) 

c( t )  = Poo(Po(t)- Poo) (3) 

where 7 is the single channel conductance,  E and V are the equil ibrium 
and membrane  potentials,  respectively, Poo is the steady-state probabil i ty 
that  the system is in the open state, and P0(t) is the probabil i ty that  it is 
open at t ime t given that  it was open with unit  probabil i ty at t = 0. For  the 
H H  model  _ 3 P~ - moo ha,  with 

and 

m~ = C~m/(C~ m + tim); h o~ = C~h/(C~h + fib), (4) 

P0 (t) = m 3 (t) h(t)Ira(0), h(0)= t = (moo + (1 -- moo) e - t/~,,)3 (h oo + (1 - h oo) e -t/,~) (S) 

where 

"Crn = (~m ~-/~m)-- 1 and "Oh = (~h + fin)- 1. (6) 

The power density spect rum S(f) is given by the Fourier  t ransform of 
Eq. (3) (Wang & Uhlenbeck,  1954). That  is, 

S(f) = 472(V - E) 2 f((1 - hoo)/h~)L(~Ch, f) 

+~ J ((l_m~)/moj[L(rm/j,f)+((l_ho~)/hoo)L(Zmjh,f) l (7) 

where (Xt=x!/(y!(x-y)!), L(z,f)is a Lorentzian function of the form 
\!Y 

"c/(1 +(2)z rf)2), and -c,q h refers to "Cm'Ch/('Cm+j'Ch). This expression has also 
been given explicity by Conti, DeFelice, and Wanke (1975) and Conti  
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Fig. 1. Current noise power density spectrum S(f) vs. frequency. The data points are taken 
from Conti et al. (1976) and the solid line is the theoretical S(f) calculated from the HH 
equations, as described in the text with c~'s and/~'s appropriate for frog node of Ranvier 

et al. (1976). If the individual channels are statistically independent, the 
total spectral density is given by the product of Eq. (7) and the number  
of channels N in the membrane area from which noise is measured. That 
is, the frequency dependence of Eq. (7) is determined by the z's, m~, and 
ho~, and the relative amplitude of S( f )  is given by N72. The data from 
Conti et al. (1976) at 40 mV depolarization and the best fit of Eq. (7) which 
these authors obtained by varying N72 are given in Fig. 1. The expressions 
for the c~'s and /?'s used for this comparison and for the other models 
examined in this study are given by Eqs. (3)-(6) of their paper. The data 
at 40 mV is the most appropriate for theoretical comparisons, because 
it does not appear to contain a significant amount  of 1If noise, and in- 
activation and activation components of the spectra are clearly discernable. 
However, other preparations may not show the latter effect. For example, 
the separation of the time scales of the h and m processes for squid is not 
as great as in the HH equations for frog node. Consequently, the separa- 
tion of the two components in the theoretical spectra for squid is barely 
discernable (Clay, 1977). 

Moore-Cox (1976) Model Spectrum 

The most compelling feature of Fig. 1 is the excellent fit of Eq. (7) 
to the data, which immediately raises the question of whether coupled 
models can possibly be consistent with noise experiments. The first model 
of this type which will be discussed is the Moore and Cox (1976) model 
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described by: 
3 f lm[Cale  

~m �9 2 ~m 
[P]~ ~ [ L] , [M] 

flh I mh[Ca]e 

[0] 

3 ~rn 
1 

�9 [ N 1  

Diagram B 

where [Ca]e represents the relative concentration of external calcium 
ions and [N] represents the open or conducting state. This model was 
designed primarily for the effects of changes of [Ca]e on squid giant 
axon under voltage clamp observed by Frankenhaeuser and Hodgkin 
(1957). It also is a coupled model, since the inactivated state [0] can be 
attained only after activation is completed, or before it begins. 

Diagram B has one serious drawback: namely, it does not obey 
microscopic reversibility. Energy is dissipated as the system moves 
through either one of its reaction cycles. Experiments with metabolic 
inhibitors would seem to indicate that this does not happen in a real 
axon, since the flow of ions during a nerve action potential does not 
require metabolic energy (Hodgkin & Keynes, 1955). However, it is 
possible, as Moore and Cox (1976) suggest, that the energy associated 
with electrical discharge of the membrane capacitance during an action 
potential is involved in some way. 

In any case, a further drawback of their model is that it fires spon- 
taneously, as shown by the simulation in Fig. 2. The real axon can also 
be made to fire spontaneously if [Ca]e is lowered (Guttman & Barnhill, 
1970) and this effect can be modeled satisfactorily in the HH equations 
by making a few simple modifications in the c~'s and fi's (Huxley, 1957). 
However, both the real axon and the HH model are stable for a wide range 
of [Ca] e. Simulations of Diagram B with rather large increases in [Ca]e, 
or g/c, or both, suggest that it does not have a region of stability. Never- 
theless, noise analysis is useful in this case, because it can show the effect 
on the theoretical spectrum of one form of coupling. 

The procedure for determining the spectrum of this model is the 
same as described by Eq. (3). That is, N~ and No(t) must be found, which 
is effected by writing the equations for the model in matrix form, 

t ~ /  (-(3C~m+3"S[Ca]e) -~m - - a m - - C ~ m  / I N /  ~ ~ 27,,, - 3 ~  m 0 0 /Om~ 
= + 0 0 3 ~ , . - ( 3 / L + 1 . 1 / ~ 0  0 

- -  ~ h  - -  ~h  O. 1 ~ h  - -  (O~h [Ca] e+ flh)/ [~h 
(8) 
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Fig. 2. Simulation of the Moore and Cox (1976) and HH models with a current shock stimulus 
which initially displaced the membrane potential in both to 10 mV. The time scale for the 
HH response has been shifted so that the action potentials can be compared. They essentially 
overlap, although the Moore-Cox response does not have the "gratuitous bump" which 
occurs during repolarization in the HH model. However, it produces a continuous train 
of action potentials, as shown in the figure. Moreover, it fires spontaneously, even without 
the initial stimulus. The HH model produces a slight oscillatory voltage overshoot, but it 
does not fire spontaneously for the normal conditions used in this simulation. (Runge-Kutta 

simulation with 1-gsec time step) 

where the conservation of probability, P + L + M + N + O = I ,  has been 
used. Eq. (8) can be written symbolically as 

i l = A q + r  (9) 

where q is the vector (L, M, N, O), r = (%, 0, 0, flh), and A is the matrix 
of transition probabilites in Eq. (8). The solution to the latter is (Hilde- 
brand, 1965) 

t 
q = eAtq(0) + ~ eA(t-S) fds (10) 

0 

where q(0)= (0, 0, 1, 0) is the initial condition corresponding to Eq. (3), and 

4 
e Ar= ~ eXkt fk(A). (11) 

1 

The quantities 2k, k = 1, ..., 4, are the eigenvalues of A and 

4 4- 

A(A) = ~I (A - 2kI)/~[ (2k -- 2,) (12) 
j * k  j:~k 

where I is the identity matrix. Consequently, the solution for No(t) is 

4 4- 
No(t) = ~ eXkt {fk(A)}3.3 + ~  (e x~t- 1) 

1 1 ~k- [~ra { A ( A ) }  3,1 @ ]~h { fk (A)}  3,4.~. (13) 
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Fig. 3. Same data as Fig. [. Solid line is S(J) calculated from the Moore and Cox (1976) 
model with c~'s and fl's appropriate for frog node of Ranvier 

The eigenvalues 2k are the solutions to the fourth order characteristic 

equation 1A-211=0 ,  which may be determined straightforwardly on a 

computer.  
The spectrum at 40 mV depolarization of this model as determined 

from the Fourier transform of Eq. (3) with the results for No~ and No(t) 

inserted is given in Fig. 3 along with the data from Conti et al. (1976). 

The result is inconsistent with the data, but the similarity of shape to the 

H H  model spectrum is interesting. 

Jakobsson  ( 1 9 7 8 )  M o d e l  Spec t rum 

A second coupled model which does satisfy microscopic reversibility 

is that of Jakobsson (1978), described by 

[B] 

_ _  [ c ]  

Diagram C 

with conductance proport ional  to B 3 and 

k A*c = k~c = fib, ~ -  lo/3, 
kAB = tim m ~ / ( 2  --  moo) 

- hoo ) /(hoo (2- m~)) k a c = 4 ~ h (  1 1/3 1/3 

h l /3 / (6 i l  hl/3"l~ k c s = m ~ f l h ,  e - l o  ~ /t ~ - - . -~  ,, 
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Fig. 4. Same data as Fig. 1. Solid line is S(f) calculated from the Jakobsson (1978) model 
with ~'s and fl's appropriate for frog node of Ranvier 

where/~h, E- 10 is the same as fih, but with the voltage shifted by 10 mV in the 
hyperpolarizing direction, and f is the time derivative of a voltage- 
dependent function f. This model is designed primarily for the inactivation 
phenomena described previously. It has the novel feature of a transient 
state A* which is inaccesible during steady voltage clamp. That is, A* 
does not affect the calculation of theoretical spectra for the model. 

Since gNa~B 3, the microscopic interpretation of the model consists 
of three statistically independent particles, any one of which can be in the 
open state l-B], or in either [A] or f-C]. The latter two states can be inter- 
preted as being the normal resting state and the inactivated state, re- 
spectively, for each particle. That is, this model is a modification of the 
HH picture in which each of the three m particles not only has the normal 
closed state Jfi, but an additional closed state, as well, which is controlled 
primarily by the inactivation kinetic parameters % and fib. That is, in- 
activation and activation are completely coupled. The kinetic diagram 
for this three particle system is constructed in a way which is rather similar 
to HH. The result is" 

3kcA 2kcA kcA 
[0,, %3. kAc " [%' 1A] ~ [0,, 2A] ~ [0,, 3``] 

D,, 0``3 ~ E;~, 1``] ~ [t~, 2.,3 

[2B, 0``] kcA k ~  [2e, 1``] Diagram D 

[3B, 0``]  
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Fig. 5. Same data as Fig. 1. Solid line is S(f) calculated from Diagram E with c~'s and/~'s 
appropriate for frog node of Ranvier 

where [me, nA] refers to the number  of particles in states B and A, re- 
spectively, and conduction occurs only in state [-38, 0A]. 

The theoretical noise spectrum requires B E and B3(t), which can 
be determined from Diagram C. The result, shown in Fig. 4, has a very 
different shape than HH or Moore-Cox, and it is clearly inconsistent 

with the data. 

Armstrong and Bezanilla (1977) Model Spectrum 

Recently Armstrong and Bezanilla (1977) have proposed a model 
based on gating current measurements. The model is somewhat qualitative, 

as not all of the rate constants are described. However, it bears some 

similarity to: [-3'] 

~ [ I ]  ~ ' [ - 2 ]  sr " [ 3 ]  Diagram E 

where k2s, is determined from microscopic reversibility to be e,,/~h/(3C~h), 
and conduction occurs only in state [3]. The activation portion of this 
scheme is identical to HH, but the inactivation process is different, since 
it can occur only when 2 or 3 of the m particles are open. Consequently, 
the conductance cannot be written in the m 3h form. It is given by the 
probability that the system is in state [-3], which can be determined by 
the matrix methods employed for the Moore-Cox model. The particular 
choice of 8 ~h and 8/~h for the rate constants between [-3] and the inactivated 
state r3'] is apparently supported by gating current measurements (Arm- 
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Fig. 6. Same data as Fig. 1. Solid line is S(f) calculated from Diagram F 

strong & Bezanilla, 1977). These authors state that the half power fre- 
quency of the inactivation component  of the spectrum should be signi- 
ficantly different from HH because of these particular rate constants. 
The spectrum for Diagram E is certainly different than HH, as shown in 

Fig. 5. The half power frequency for the inactivation component  cannot, 
in fact, be determined, since the latter is effectively obscured by the activa- 
tion components. This finding is insensitive to the particular choice of rate 

constants connecting state [-3'] to [2] and [3]. It appears to be a function 
of the structure of Diagram E. 

An Alternative Coupling Scheme 

The similarity of the Moore-Cox spectrum to HH suggests the related 

kinetic cycle: [-3'] 

Diagram F 
2 ~m cq,n 

3~,, [1] [2] ~ [3] [0], em " 2 ~  3~,~ 

where ko3,=(o~,,/flm)3fih, so that microscopic reversibility is satisfied. 
Coupling occurs in this model, as in Moore-Cox, since the inactivated 
state can be attained only when all or none of the three m particles are 
open. This may be a promising mechanism, since the spectrum is rather 
similar to HH, as shown in Fig. 6, with the greatest deviation occurring 
at low frequencies. For this comparison the scatter in the data of Conti 
et al. (1976) is sufficiently great so that Diagram F cannot be immediately 
ruled out. 
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Discussion 

This paper is not intended to be a thorough noise analysis of all of the 
models which have been proposed for Na conductance in nerve. However, 
it is a fair sample of the different classes of theoretical coupling mechanisms. 
One obvious modification of the various diagrams which was not analyzed 
is to allow conduction in more than one state. The voltage dependence 
of the noise amplitude is affected by such a change, but the shape of S(f) 
is not significantly altered, if the relative conductance of the additional 
open states is small (Chen & Hill, 1973). Conti et al. (1976) find that the 
single conducting state HH model (Diagram A) adequately accounts for 
the voltage dependence of their data, although the aggrement is not 
significantly altered if state [2] conducts at the 0.01 level relative to state 
[3]. If this figure were substantially higher, both the noise data and the 
macroscopic conductance would be significantly altered. For example, 
if the relative conductance of state [2] were ~c, gNa ~ m3 h would be replaced 
by gNa ~rn3 h + 3 ~c m2(1 - m)h. If tr 1, it would seem that standard voltage 
clamp analysis might detect this second conducting state. 

The comparison between the theoretical spectra and the noise data 
would appear to rule out all but HH and the model in Diagram F. A 
second point in favor of the latter is that it appears to be consistent with 
the inactivation delay experiment (Bezanilla & Armstrong, 1977) which 
cannot be explained by HH. However, any model must be subjected 
to the complete list of experimental tests. The point of this paper is simply 
to add noise analysis to that list. 

Clearly, more noise data is needed from other preparations and 
from frog node at larger depolarizing voltages than 40mV. Unfortu- 
nately, reliable stationary noise records are difficult to obtain over a 
large range of voltages, because of inactivation. Sigworth (1977) has 
recently shown that noise information can be obtained at large depolari- 
zations using nonstationary noise analysis. His data offer further support 
for the idea that conduction occurs only in one state. However, the detailed 
model testing proposed in this study probably requires frequency analysis, 
which can be reliably performed only on stationary noise records. 

The author gratefully acknowledges useful discussions during the early phase of this 
work with Louis DeFelice and Eric Jakobsson. 
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